Compactness of Sobolev imbeddings involving rearrangement-invariant norms
نویسندگان
چکیده
منابع مشابه
Extrapolation of Reduced Sobolev Imbeddings
We consider fractional Sobolev spaces with dominating mixed derivatives and prove generalizations of Trudinger’s limiting imbedding theorem.
متن کاملOn weighted critical imbeddings of Sobolev spaces
Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...
متن کاملDimension-free imbeddings of Sobolev spaces
We prove dimension-free imbedding theorems for Sobolev spaces using extrapolation means and the Gross logarithmic inequality.
متن کاملCriteria for Imbeddings of Sobolev-poincaré Type
Ω u dx and Ω ⊂ R is bounded and satisfies a uniform interior cone condition; by density of smooth functions (1.1) then holds for all functions in the Sobolev space W (Ω) consisting of all functions in L(Ω) whose distributional gradients belong to L(Ω). For 1 < p < n, inequality (1.1) was proved by Sobolev ([So1], [So2]); for p = 1, it is due to Gagliardo [G] and Nirenberg [N] (also see [M1]). W...
متن کاملDiscretization and Anti-discretization of Rearrangement-invariant Norms
Abstract We develop a new method of discretization and anti-discretization of weighted inequalities which we apply to norms in classical Lorentz spaces and to spaces endowed with the so-called Hilbert norm. Main applications of our results include new integral conditions characterizing embeddings Γp(v) ↪→ Γq(w) and Γp(v) ↪→ Λq(w) and an integral characterization of the associate space to Γp(v),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2008
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm186-2-2